10.8

V Play the Video

- Figure 1 shows the helix and the osculating plane in Example A.

FIGURE I

FIGURE 2

V EXAMPLE A Find the equations of the normal plane and osculating plane of the helix $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}$ in Example 6 at the point $P(0,1, \pi / 2)$.

SOLUTION The normal plane at P has normal vector $\mathbf{r}^{\prime}(\pi / 2)=\langle-1,0,1\rangle$, so an equation is

$$
-1(x-0)+0(y-1)+1\left(z-\frac{\pi}{2}\right)=0 \quad \text { or } \quad z=x+\frac{\pi}{2}
$$

The osculating plane at P contains the vectors \mathbf{T} and \mathbf{N}, so its normal vector is $\mathbf{T} \times \mathbf{N}=\mathbf{B}$. From Example 6 we have

$$
\mathbf{B}(t)=\frac{1}{\sqrt{2}}\langle\sin t,-\cos t, 1\rangle \quad \mathbf{B}\left(\frac{\pi}{2}\right)=\left\langle\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right\rangle
$$

A simpler normal vector is $\langle 1,0,1\rangle$, so an equation of the osculating plane is

$$
1(x-0)+0(y-1)+1\left(z-\frac{\pi}{2}\right)=0 \quad \text { or } \quad z=-x+\frac{\pi}{2}
$$

EXAMPLE B Find and graph the osculating circle of the parabola $y=x^{2}$ at the origin.

SOLUTION From Example 5 the curvature of the parabola at the origin is $\kappa(0)=2$. So the radius of the osculating circle at the origin is $1 / \kappa=\frac{1}{2}$ and its center is $\left(0, \frac{1}{2}\right)$. Its equation is therefore

$$
x^{2}+\left(y-\frac{1}{2}\right)^{2}=\frac{1}{4}
$$

For the graph in Figure 2 we use parametric equations of this circle:

$$
x=\frac{1}{2} \cos t \quad y=\frac{1}{2}+\frac{1}{2} \sin t
$$

